Learning Light Field Reconstruction from a Single Coded Image

نویسندگان

  • Anil Kumar Vadathya
  • Saikiran Cholleti
  • Gautham Ramajayam
  • Vijayalakshmi Kanchana
  • Kaushik Mitra
چکیده

Light field imaging is a rich way of representing the 3D world around us. However, due to limited sensor resolution capturing light field data inherently poses spatio-angular resolution trade-off. In this paper, we propose a deep learning based solution to tackle the resolution trade-off. Specifically, we reconstruct full sensor resolution light field from a single coded image. We propose to do this in three stages 1) reconstruction of center view from the coded image 2) estimating disparity map from the coded image and center view 3) warping center view using the disparity to generate light field. We propose three neural networks for these stages. Our disparity estimation network is trained in an unsupervised manner alleviating the need for ground truth disparity. Our results demonstrate better recovery of parallax from the coded image. Also, we get better results than dictionary learning approaches on simulated data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Accurate Reconstruction of Compressed Color Light Field

Light field photography has been studied thoroughly in recent years. One of its drawbacks is the need for multilens in the imaging. To compensate that, compressed light field photography has been proposed to tackle the tradeoffs between the spatial and angular resolutions. It obtains using only one lens, a compressed version of the regular multi-lens system. The acquisition system consists of a...

متن کامل

Compressive Light Field Photographysing Overcomplete Dictionaries and Optimized Projections

Light field photography has gained a significant research interest in the last two decades; today, commercial light field cameras are widely available. Nevertheless, most existing acquisition approaches either multiplex a low-resolution light field into a single 2D sensor image or require multiple photographs to be taken for acquiring a high-resolution light field. We propose a compressive ligh...

متن کامل

Compressive light field photography using overcomplete dictionaries and optimized projections Citation

Light field photography has gained a significant research interest in the last two decades; today, commercial light field cameras are widely available. Nevertheless, most existing acquisition approaches either multiplex a low-resolution light field into a single 2D sensor image or require multiple photographs to be taken for acquiring a high-resolution light field. We propose a compressive ligh...

متن کامل

Nonstructured light-based sensing for 3D reconstruction

Structured light-based sensing (SLS) requires the illumination to be coded either spatially or temporally in the illuminated pattern. However, while the former demands the use of uniquely coded spatial windows whose size grows with the reconstruction resolution and thereby demanding increasing smoothness on the imaged scene, the latter demands the use of multiple image captures. This article pr...

متن کامل

Understanding camera trade-offs through a Bayesian analysis of light field projections - A revision

Computer vision has traditionally focused on extracting structure, such as depth, from images acquired using thin-lens or pinhole optics. The development of computational imaging is broadening this scope; a variety of unconventional cameras do not directly capture a traditional image anymore, but instead require the joint reconstruction of structure and image information. For example, recent co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.06710  شماره 

صفحات  -

تاریخ انتشار 2018